Géométrie dans l’espace : exercices de maths en seconde (2de)

Des exercices sur la géométrie dans l’espace en seconde (2de).

Exercice 1 :

Soit ABCD un tétraèdre et I, J deux points appartenant respectivement aux arêtes [AB] et [BC] tels que (IJ) n’est pas parallèle à (AC). Soit P le plan passant par B et parallèle au plan (IJD). Le but de l’exercice est de tracer l’intersection du plan P avec le plan (ACD).

1)  La droite (IJ) coupe la droite (AC) en K. Tracer la droite d’intersection des plans (ACD) et (IJD). Justifier.

2)  Soit D la droite d’intersection du plan P et du plan (ABC). Pourquoi a-t-on D parallèle à (IJ) ? Tracer D.

3)  La droite D coupe la droite (AC) en L. Soit D’ la droite d’intersection du plan P et du plan (ACD).
Pourquoi a-t-on D’ parallèle à (DK) ? Tracer D’.

Exercice 2 :

Soit une pyramide de sommet S dont la base est un quadrilatère ABCD.
On place I sur [SA] tel que \vec{SI}=\frac{1}{3}\vec{SA} ,  et J sur [SD] tel que \vec{SJ}=\frac{1}{3}\vec{SD}

1)  Tracer \Delta l’intersection du plan (CIJ) et du plan de base. Justifier cette construction.

2)  Déterminer sans justifier la section de la pyramide par le plan (CIJ)

Exercice 3 :

Soit une pyramide SABCD telle que (AB) et (CD) se coupent en E.

1)  Déterminer l’intersection des plans (SAB) et (SDC)

2)  Un plan P parallèle à (ES) coupe (SA) en I, (SB) en J, (SC) en K, (SD) en L.
Montrer que (IJ) et (KL) sont parallèles.

Exercice 4 :

Une pyramide SABCD est telle que la base ABCD est un parallélogramme.

Appelons I, J, K les milieux des arêtes [SB], [SC] et [AB]

1)  Démontrer que les droites (IJ) et (AD) sont parallèles

2)  Déduisez de la question 1) que le plan (SDK) et la droite (IJ) sont sécants

3)  Justifiez et construisez l’intersection des plans (SKD) et (SBC)

4)  Justifiez et construisez l’intersection de la droite (IJ) avec le plan (SKD)

Exercice 5 :

Soit ABCDEF, un prisme droit, I un point de ]DE[, J un point de ]DF[ et K, le centre de la face BCFE du prisme. On s’intéresse à l’intersection des plans (IJK) et (ABC).

1er cas : (IJ)//(EF)

1)  Montrer que l’intersection de (IJK) avec (BCF) est parallèle à (IJ). On appellera \Delta cette intersection.

2)  On appelle L l’intersection de \Delta  avec (EB) et M l’intersection de D avec (FC). Construire ci-dessous l’intersection de (IJK) avec (ABC). On ne justifiera que l’existence des points supplémentaires nécessaire à la construction ou l’utilisation des propriétés sur le parallélisme.

2ème cas : (IJ) n’est pas parallèle à (EF). On appellera N leur point d’intersection.

3)  Sans justifier, construire ci-dessous l’intersection de (IJK) avec (BCF) puis de (IJK) avec (ABC).

Prisme droit


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «géométrie dans l'espace : exercices de maths en seconde (2de)» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Maths Exercices.fr avec tous les cours,exercices corrigés Application Maths Exercices.fr sur Google Play Store. Application Maths Exercices.fr sur Apple Store.
.

Des cours et exercices corrigés en 2de en vidéos


Les fiches de cours et exercices de maths les plus consultées sur Maths Exercices.fr Concours : gagnez une calculatrice Texas Instrument (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


concours texas instrument Je participe au concours afin de gagner la calculatrice.
D'autres fiches que vous devriez consulter

Inscription gratuite à Mathématiques Web. Maths Exercices c'est 1 635 396 fiches de cours et d'exercices téléchargées.
Rejoignez les 31 730 membres de Maths Exercices, inscription gratuite.

Maths Exercices

GRATUIT
VOIR