Produit scalaire : cours de maths en terminale S à télécharger en PDF

Ce cours de maths sur le produit scalaire fait intervenir les notions suivantes :

  • définition du produit scalaire de deux vecteurs ;
  • vecteurs colinéaires;
  • vecteurs orthogonaux;
  •  propriétés de linéarité et de symétrie du produit scalaire;
  • identité du parallélogramme;
  •  identités remarquables;
  •  théorème de la médiane.

Ce cours de mathématiques sur le produit scalaire en terminale S est à télécharger gratuitement au format PDF.

I.le produit scalaire dans l’espace

1.Approche géométrique du produit scalaire

Définition :

Soient  \vec{u} et \vec{v} deux vecteurs de l’espace, et A,B,C trois points tels que \vec{u}=\vec{AB} et \vec{v}=\vec{AC}.Il existe au moins un plan P contenant les point A, B et C.

On appelle produit scalaire de \vec{u} et \vec{v} , le produit scalaire \vec{AB}.\vec{AC} calculé dans le plan P.

Ainsi :

Si u et v sont non nuls, \vec{u}.\vec{v}=AB\times   AC\times   cos(\widehat{BAC});

Si u=0 ou v=0, le produit scalaire de u et v est nul : \vec{u}.\vec{0}=0 et \vec{0}.\vec{v}=0.

Exemple :

ABCDEFGH est un cube d’arête a.

Soit \vec{u}=\vec{BF} et \vec{v}=\vec{AH}=\vec{BG}.

\vec{u}.\vec{v}=\vec{BF}.\vec{AH}=\vec{BF}.\vec{BG}=BF\times   BG\times   cos(\widehat{FBG})

donc \vec{u}.\vec{v}=a\times   a\sqrt{2}\times   cos(\frac{\pi}{4})=a\times   a\sqrt{2}\times   \frac{\sqrt{2}}{2}=a^2

produit scalaire cube

Propriété:

Si \vec{u} et \vec{v} sont deux vecteurs non nuls tels que \vec{u}=\vec{AB} et \vec{v}=\vec{AC}, alors :\vec{u}.\vec{v}=\vec{AB}. \vec{AC}=\vec{AB}. \vec{AH}=\vec{AK}. \vec{AC}

où H est le projeté orthogonal de C sur la droite (AB) et K est le projeté orthogonal de B sur la droite (AC) .

Si \vec{u} ,\vec{v} et \vec{w} sont trois vecteurs de l’espace et k un nombre réel alors :

  • \vec{u}.(\vec{v}+\vec{w})=\vec{u}.\vec{v}+\vec{u}.\vec{w}
  • \vec{u}.\vec{v}=\vec{v}.\vec{u}
  • (k\vec{u}).\vec{v}=\vec{u}.(k\vec{v})=k(\vec{u}.\vec{v)}

2.Caractérisation vectorielle de l’orthogonalité

Définition :

Deux vecteurs non nuls sont orthogonaux si, et seulement s’ils dirigent des droites orthogonales.Le vecteur nul est orthogonal à tous les vecteurs de l’espace.

Propriété :
Deux vecteurs  \vec{u} et \vec{v} sont orthogonaux si, et seulement si, \vec{u}.\vec{v}=0.

3.Expression analytique du produit scalaire

Propriété :

Dans un repère orthonormé (O,i,j,k) de l’espace, on considère les vecteurs \vec{u} et \vec{v} de coordonnées respectives (x,y,z) et (x’,y’,z’),Nous avons \vec{u}.\vec{v}=xx'+yy'+zz'.

En particuliers, \vec{u}.\vec{u}=x^2 +y^2 +z^2 et  \|\vec{u}  \|=\sqrt{\vec{u}.\vec{u}}=\sqrt{x^2 +y^2 +z^2}.

II.Applications du produit scalaire

1.Vecteur normal à un plan

Définition :

Un vecteur \vec{n} non nul est dit orthogonal à un plan si ce vecteur est un vecteur directeur d’une droite orthogonale à ce plan.Ce vecteur est alors appelé vecteur normal au plan.

Théorème :

Une droite (d) est orthogonale à toute droite d’un plan P si, et seulement si, elle est orthogonale à deux droites sécantes  (d_1) et (d_2) de ce plan.

vecteur normal plan

2.Equation cartésienne d’un plan

Propriété :

Soit un vecteur \vec{n} non nul et A un point de l’espace.L’unique plan P passant par A  et de vecteur normal \vec{n} est l’ensemble des points M de l’espace tels que :

\vec{AM}.\vec{n}=0.

Propriété :

Dans un repère orthonormé, un plan P de vecteur normal \vec{n}(a,b,c) a une équation de la forme ax+by+cz+d=0.Réciproquement, si a,b et c ne sont pas tous les trois nuls, l’ensemble (E) des points M(x,y,z)   tels que

ax+by+cz+d=0 est un plan de vecteur normal \vec{n}(a,b,c).


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «produit scalaire : cours de maths en terminale S à télécharger en PDF» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Maths Exercices.fr avec tous les cours,exercices corrigés Application Maths Exercices.fr sur Google Play Store. Application Maths Exercices.fr sur Apple Store.
.

Des cours et exercices corrigés en terminale en vidéos


Les fiches de cours et exercices de maths les plus consultées sur Maths Exercices.fr Concours : gagnez une calculatrice Texas Instrument (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


concours texas instrument Je participe au concours afin de gagner la calculatrice.
D'autres fiches que vous devriez consulter

Inscription gratuite à Mathématiques Web. Maths Exercices c'est 1 632 909 fiches de cours et d'exercices téléchargées.
Rejoignez les 31 682 membres de Maths Exercices, inscription gratuite.

Maths Exercices

GRATUIT
VOIR