Trigonométrie : exercices en PDF en première S

Une série d’exercices corrigés de maths en première S sur la trigonométrie.

Cette fiche fait intervenir les notions suivantes :

  • formule d’addition;
  • formules de trigonométrie;
  • cercle trigonométrique;
  • formules d’Al-Kashi;
  • formule de Pythagore généralisée;
  • mesure principale d’un angle.

Exercice 1 :

Soit g la fonction définie sur \mathbb{R} par :

g(x)=cos(4x)sin^2(4x).

1)Montrer que g est paire. Interpréter graphiquement.

2)Montrer que g est \frac{\pi}{2} – périodique.

Exercice 2 :

soit g la fonction définie sur \mathbb{R} par :

g(x)=cos(x)+sin(x).

1)Montrer que g n’est ni paire ni impaire.

2)Montrer que g est 2\pi – périodique. Interpréter graphiquement.

3)Montrer que, pour tout réel x, -2\leq\, g(x)\leq\, 2.

Exercice 3 :

1)A partir de cos(\frac{\pi}{3}), déterminer cos(-\frac{\pi}{3}) puis cos(\frac{2\pi}{3}).

2)Même question avec sin(-\frac{\pi}{3}) puis sin(\frac{2\pi}{3}).

Exercice 4 :

1)Résoudre sur [0;2\pi[, l’équation cos(x)=\frac{\sqrt{3}}{2}.

2)Résoudre sur [0;2\pi[, l’équation sin(x)=\frac{\sqrt{2}}{2}.

Exercice 5 :

1.Donner les abscisses des points A et B.

2)Résoudre sur [0;2\pi[, l’équation cos(x)=\frac{\sqrt{3}}{2}.

3)Résoudre sur [0;2\pi[, l’inéquation cos(x) \leq\, \frac{\sqrt{3}}{2}.

Exercice 6 :

Dans chaque cas, vérifier que la fonction f est T-périodique.

a)f:x \mapsto   cos(2\pi x) et T = 1.

b)f:x \mapsto   sin(3x) et T=\frac{2\pi}{3}.

c)f:x \mapsto   \frac{2}{3}cos(7x+\frac{\pi}{4}) et T=\frac{2\pi}{7}.

d)f:x \mapsto   \frac{10}{7}sin(\frac{5x-8}{3}) et T=\frac{6\pi}{5}.

Exercice 7 :

1.a)Déterminer un réel x appartenant à l’intervalle ]-\pi;\pi[ associé à \frac{91\pi}{4}.

b)En déduire cos(\frac{91\pi}{4}) puis, sin(\frac{91\pi}{4}).

2.a)Calculer cos(-\frac{13\pi}{6}).

b)Calculer sin(-\frac{81\pi}{2}).

3)a)Calculer cos(\frac{25\pi}{3}) et en déduire sin(\frac{25\pi}{3}).

b)Calculer sin(\frac{45\pi}{6}) et en déduire cos(\frac{45\pi}{6}).

Exercice 8 :

Soit f la fonction définie sur ]-\pi ; \pi ] par :

f(x) = 4cos^2(x) + 2(\sqrt{2} - l)cos(x) -\sqrt{2}.
Le but de l’exercice est de trouver les solutions de l’équation
f(x) = 0 et de l’inéquation f(x) > 0.
1. On pose X = cos(x).
a) Montrer que -1 <X< 1.
b) Montrer que résoudre l’équation f(x) = 0 revient à
résoudre l’équation 4X^2 + 2(\sqrt{2} - l)X -\sqrt{2}=0.

c)Résoudre sur [- 1 ; 1], l’équation 4X^2 + 2(\sqrt{2} - l)X -\sqrt{2}=0.
On notera X_1 et X_2 les solutions obtenues.
d) En déduire les solutions sur ]-\pi ; \pi ] de l’équation f(x) = 0.
2. On pose X = cos(x).
a) Résoudre sur [-1 ; 1] l’inéquation 4X^2 + 2(\sqrt{2} - l)X -\sqrt{2}>0.


Télécharger puis imprimer cette fiche en PDF

Télécharger ou imprimer cette fiche «trigonométrie : exercices en PDF en première S» au format PDF afin de pouvoir travailler en totale autonomie.


Télécharger nos applications gratuites Maths Exercices.fr avec tous les cours,exercices corrigés Application Maths Exercices.fr sur Google Play Store. Application Maths Exercices.fr sur Apple Store.
.

Des cours et exercices corrigés en 1ère en vidéos


Les fiches de cours et exercices de maths les plus consultées sur Maths Exercices.fr Concours : gagnez une calculatrice Texas Instrument (TI)

Nouveau concours avec une calculatrice Texas Instrument à gagner.
Le tirage au sort sera effectué avec un logiciel de manière aléatoire chaque début de mois et les résultats seront annoncés sur notre page facebook.
Les gagnants seront tirés au sort parmi les bonnes réponses de nos abonnés de notre nouvelle chaîne Youtube.


concours texas instrument Je participe au concours afin de gagner la calculatrice.
D'autres fiches que vous devriez consulter

Inscription gratuite à Mathématiques Web. Maths Exercices c'est 1 630 588 fiches de cours et d'exercices téléchargées.
Rejoignez les 31 652 membres de Maths Exercices, inscription gratuite.

Maths Exercices

GRATUIT
VOIR